Oxygen adsorption onto pure and doped Al surfaces--the role of surface dopants.

نویسندگان

  • Cláudio M Lousada
  • Pavel A Korzhavyi
چکیده

Using density functional theory (DFT) with the PBE0 density functional we investigated the role of surface dopants in the molecular and dissociative adsorption of O2 onto Al clusters of types Al50, Al50Alad, Al50X and Al49X, where X represents a dopant atom of the following elements Si, Mg, Cu, Sc, Zr, and Ti. Each dopant atom was placed on the Al(111) surface as an adatom or as a substitutional atom, in the last case replacing a surface Al atom. We found that for the same dopant geometry, the closer is the ionization energy of the dopant element to that of elemental Al, the more exothermic is the dissociative adsorption of O2 and the stronger are the bonds between the resulting O atoms and the surface. Additionally we show that the Mulliken concept of electronegativity can be applied in the prediction of the dissociative adsorption energy of O2 on the doped surfaces. The Mulliken modified second-stage electronegativity of the dopant atom is proportional to the exothermicity of the dissociative adsorption of O2. For the same dopant element in an adatom position the dissociation of O2 is more exothermic when compared to the case where the dopant occupies a substitutional position. These observations are discussed in view of the overlap population densities of states (OPDOS) computed as the overlap between the electronic states of the adsorbate O atoms and the clusters. It is shown that a more covalent character in the bonding between the Al surface and the dopant atom causes a more exothermic dissociation of O2 and stronger bonding with the O atoms when compared to a more ionic character in the bonding between the dopant and the Al surface. The extent of the adsorption site reconstruction is dopant atom dependent and is an important parameter for determining the mode of adsorption, adsorption energy and electronic structure of the product of O2 adsorption. The PBE0 functional could predict the existence of the O2 molecular adsorption product for many of the cases investigated here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural, electronic, magnetic and chemical properties of B-, C- and N-doped MgO(001) surfaces.

Doping of simple oxide materials can give rise to new exciting physical and chemical properties and open new perspectives for a variety of possible applications. Here we use density functional theory calculations to investigate the B-, C- and N-doped MgO(001) surfaces. We have found that the investigated dopants induce magnetization of the system amounting to 3, 2 and 1 μB for B, C and N, respe...

متن کامل

DFT Study of N-hydroxyurea Adsorption Behavior onto Pristine and Iron-doped Single-walled Carbon Nanotube

The interactions between N-hydroxyurea (NHU) as anticancer drug and SWCNTs (pure and Fe-doped) were investigated with density functional theory. In this study, large long-range corrected CAM-B3LYP and B3LYP were employed to investigate the stability of the different NHU-CNT and NHU/Fe-CNT complexes in the gas phase and solution (water). The presence of an iron atom would create suitable space o...

متن کامل

The study of Lysozyme adsorption onto 2-hydroxyethylmethacrylates and Silicon Hydrogel Contact Lenses

In order to increase the water content and the oxygen permeability of hydrogels used in themanufacture of contact lenses, the polar monomer Silicon Hydrogel Contact Lenses (SHCL), and 2-hydroxyethyl methacrylate (HEMA) were copolymerized with the hydrogels. Due to the presence ofpolar monomers in the conventional contact lenses, the major component of the human tear,lysozyme is extensively adso...

متن کامل

The DFT Study of Oxygen Adsorption on Pristine and As-Doped of the (4, 4) Armchair Models BNNTs

In this work, the effects of As-doped on the adsorption of oxygen gas on the outer and inner surface ofboron nitride nanotube (BNNTs) is investigated. The structural parameters, quantum properties involving:bond length, bond angle, HOMO-LUMO orbital, gapenergy, electron affinity, electronegativity, chemicalpotential, global hardness, global softness and NMR parameters of BNNTs are calculated at...

متن کامل

Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.

In photoelectrochemical cells, sunlight may be converted into chemical energy by splitting water into hydrogen and oxygen molecules. Hematite (α-Fe(2)O(3)) is a promising photoanode material for the water oxidation component of this process. Numerous research groups have attempted to improve hematite's photocatalytic efficiency despite a lack of foundational knowledge regarding its surface reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 2015